自2001年上市以來，即獲得客戶一致肯

定之CJ1M的功能升級版，全新上市。

- 更強的基本功能及更大的程式容量。
- 每一個CPU最多可連接 40 台模組。
- 可在CPU上連接脈衝 $/ / O$ 模組，並追加定位控制功能。
- 可利用市售USB䌐線輕鬆地與個人電腦連接。
- 可選擇是否需要EtherNet／IP連接埤。
- 内建序列埤。（CJ2M－CPU3 \square 可藉由安裝選購的序列板進行選擇）

CJ2M－MD21 \square

CJ2M－CPU3 \square

CJ2M－CPU1 \square

特長

- 備有5 Kstep至60 Kstep 五種最佳程式容量可供選擇。
- LD命令 $=40 \mathrm{~ns}$ ，SIN演算 $=0.86 \mu \mathrm{~s}$ 等演算基本功能更加完善。此外，呼叫功能區塊的時間也更為迅速。
- 最多可安裝2台脈衝I／O模組，簡單實現最多4軸的定位控制。具有4點高速計數器，並可支援8點中斷輸入。（CJ2M CPU版本V2．0或更高版本）
- 可利用EtherNet／IP埠與週邊工具連接，如此便可進行PLC之間的資料傳輸訊息通訊，FTP傳送等一般乙太網路通訊。（CJ2M－CPU3 \square ）
- 配備USB埠，可直接以市售的USB纜線連接支援軟體。
- 安裝序列板後，即可設置RS－232C或RS－422A／485通訊埠。（CJ2M－CPU3 \square ）
- 備有功能區塊專用記憶體區，在使用功能區塊進行零件化／結構化的同時，降低使用者對程式區的使用量。
- 可直接使用CJ1用模組。

國外規格

－相關標記如下所示。U：UL；U1：UL（Class I Div 2已取得危險場所認證之產品）；C：CSA；UC：cULus；UC1：cULus（Class I Div 2已取得危險場所認證之產品）；CU：cUL；N：NK；L：Lloyd＇s Register；CE：EC指令。
－詳細使用條件請另行洽詢OMRON 。

CJ2M（附EtherNet／IP功能）CPU模組

產品名稱	規格						消耗電流（A）		型式	國外規格
	輸出入點數構成模組之安裝台數（裝置之最大新增數）	程式容量	資料記憶體容量	LD指令之處理速度	內建 EtherNet／ IP埠	選購板插槽	5 V 類	24 V 類		
CJ2M（附 EtherNet／IP功能） CPU模組	$\begin{aligned} & \text { 2560點/40台(最多可 } \\ & \text { 新增3個擴充底板) } \end{aligned}$	60K steps	160K words （DM：32K words， EM： 32 K words $\times 4$ banks）	0.04 us	1個連接埠	1個插槽	＊ 0.7	－	©CJ2M－CPU35	UC1, N, L,
		30K steps							OCJ2M－CPU34	
		20K steps	64K words （DM：32K words， EM：32K words $\times 1$ bank）						OCJ2M－CPU33	
		10K steps							©CJ2M－CPU32	
		5 K steps							©CJ2M－CPU31	

＊使用CP1W－CIF01／11／12型序列板時，將各別增加0．005A，0．030A，0．075A。
使用RS－232C／RS－422A轉換模組NT－ALOO1型時，每台將增加0．15A；若使用RS－422A轉換接頭CJ1W－CIF11型時，則每台將增加0．04A。使用可程式終端機NV3W－M $\square 20 L$ 時，每台將增加 0.20 A 。

CJ2M CPU模組

產品名稱	規格						消耗電流（A）		型式	國外規格
	輸出入點數／構成模組之安裝台數（裝置之最大新增數）	程式容量	資料記憶體容量	LD指令之處理速度	內建 EtherNet／ IP埠	選購板插槽	5 V 類	24 V 類		
CJ2M CPU模組	2560點／40台（最多可新增3個擴充底板）	60K steps	160K words （DM：32K words， EM： 32 K words $\times 4$ banks）	$0.04 \mu \mathrm{~s}$	－	－	＊ 0.5	－	©CJ2M－CPU15	$\begin{aligned} & \text { UC1, N, L, } \\ & \text { CE } \end{aligned}$
		30K steps							©CJ2M－CPU14	
		20K steps	64K words （DM：32K words， EM： 32 K words $\times 1$ bank）						©CJ2M－CPU13	
		10K steps							©CJ2M－CPU12	
		5K steps							©CJ2M－CPU11	

＊使用RS－232C／RS－422A轉換模組NT－AL001型時，每台將增加0．15A；若使用RS－422A轉換接頭CJ1W－CIF11型時，則每台將增加0．04A。使用可程式終端機NV3W－M $\square 20 L$ 時，每台將增加 0.20 A。

序列通訊選購板（僅限CJ2M－CPU3 \square 型）
在CJ2M CPU模組 CJ2M－CPU3 \square 型前方的選購板插槽中裝上序列通訊選購板後，即可加裝序列埠。

產品名稱	規格	序列通訊模式	消耗電流（A）		型式	國外規格
			5 V	24 V		
RS－232C選購板	RS－232C 埠 x 1 D－SUB 9 接腳接頭（母） 傳送距離：最大 15 m 附 1 個 RS－232C 插頭（D－SUB 9 接腳母接頭） （插頭：XM2A－0901型，外蓋：XM2S－0911－E型）	主機連結，NT連結（1：N），無順序，序列PLC連結子局，序列PLC連結主局，序列閘道（轉換為CompoWay／F），工具匯流排＊	0.005	－	OCP1W－CIF01	$\begin{aligned} & \text { UC1, N, L, } \\ & \text { CE } \end{aligned}$
RS-422A/485選購板	RS－422A／485（非隔離型）x 1端子台：使用棒狀壓著端子傳送距離：最大 50 m		0.030	－	©CP1W－CIF11	
RS－422A／485 （隔離型）選購板	RS－422A／485（隔離型）$\times 1$端子台：使用棒狀壓著端子傳送距離：最大 500 m		0.075	－	CP1W－CIF12	

＊NT連結（1：1），序列閘道（轉換成上位連結FINS），1：1連結主局，1：1連結子局無法使用。
註：CJ2M CPU模組無法適用CP系列的Ethernet選購板（CP1W－CIF41型），LCD選購板（CP1W－DAM01型）。

脈衝I／O模組（菫適用於CJ2M CPU模組模組Ver．2．0以上）

CJ2M CPU模組 模組Ver．2．0以上可藉由加裝脈衝／O模組後即具備脈衝／／O功能。（最多2台）

產品名稱	規格	消耗電流（A）		型式	國外規格
		5 V 類	24 V 類		
脈衝I／O模組	Sink 輸出型，MIL 接頭 輸入10點（包括中斷輸入／脈衝擷取入力4點，高速計數器輸入2點）輸出6點（包括脈衝輸出2點，PWM輸出2點）	0.08	－－－	OCJ2M-ME211	UC1, N, L,
	Source輸出型，MIL接頭 輸入10點（包括中斷輸入／脈衝擷取入力4點，高速計數器輸入2點）輸出6點（包括脈衝輸出2 點，PWM輸出2點）	0.08	－－－	OCJ2M-MD212	

註：脈衝I／O模組並未附接頭。以下接頭或連接線請另行購買使用。
脈衝 $1 / O$ 模組用接頭／連接線
相關配線方法請參考「脈衝I／O模組 接頭配線方法」。

CPU模組附屬品

CPU模組之附屬配件包含下列項目。

項目		
電池	CJ1W－BAT01	
端子外蓋	CJ1W－TER01型（必須安裝於CPU裝置的右方）	
端板	PFP－M型（2個）	
序列埠（RS－232C）接頭＊	序列埠連接用接頭（插頭：XM2A－0901型，外蓋：XM2S－0911－E型）—組（D－SUB 9接腳	母接頭）
＊未附屬於CJ2M－CPU3 \square 型之中。		

一般規格

項目		CJ2M	
		CPU1 \square	CPU3 \square
構造		控制盤內建型	
接地方法		D種接地（ 第3種接地）	
外觀 高度 x 厚度 x 寛度		$90 \mathrm{~mm} \times 75 \mathrm{~mm} \times 31 \mathrm{~mm}$	$90 \mathrm{~mm} \times 75 \mathrm{~mm} \times 62 \mathrm{~mm}$
重量		$130 \mathrm{gW下}$	190 g 以下＊
消費電流		$5 \mathrm{VDC}, 0.5 \mathrm{~A}$	$5 \mathrm{VDC}, 0.7 \mathrm{~A}$
使用環境	使用環境溫度	$0 \sim 55^{\circ} \mathrm{C}$	
	使用環境濕度	10～90\％RH（不可結露）	
	使用環境氣體	不可有腐蝕性氣體	
	保存環境溫度	$-20 \sim 70^{\circ} \mathrm{C}$（電池除外）	
	使用場所之海拔高度	$2000 \mathrm{mW下}$	
	污染度	污染度2以下：符合JIS B3502及IEC61131－2規格	
	耐雜訊性	符合IEC61000－4－4 2 kV （電源線）	
	過電壓類別（Over－voltage Category）	類別II：符合JIS B3502及IEC61131－2規格	
	EMC耐受性（Immunity）等級	B區	
	耐震動	符合 JIS C60068－2－6 $5 \sim 8.4 \mathrm{~Hz}$ 振幅 $3.5 \mathrm{~mm}, ~ 8.4 \sim 150 \mathrm{~Hz}$ 加速度為 $9.8 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{X}, ~ \mathrm{Y}, ~ \mathrm{Z}$ 每個方向 100 分鐘（掃描時間10分鐘 X 掃描次數 10 次 $=$ 總計 100 分）	
	耐衝擊	符合 JIS C60068－2－27 $147 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{X}, ~ \mathrm{Y}, ~ \mathrm{Z}$ 每個方向3次（ 繼電器輸出模組為 $100 \mathrm{~m} / \mathrm{s}^{2}$ ）	
電池	壽命	5年 $25^{\circ} \mathrm{C}$	
	使用機型	CJ1W－BAT01	
適用規格		符合cULus，NK，LR，EC指令	
＊無序列選購板之狀態。			

CJ2M－CPU3 $\square /-\mathrm{CPU1} \square /-\mathrm{MD} 21 \square$

性能規格

項目			CJ2M				
			CPU11／31	CPU12／32	CPU13／33	CPU14／34	CPU15／35
程式容量			5 K steps	10K steps	20K steps	30K steps	60K steps
輸出入點數			2，560點				
處理速度	共用處理時間（過負載）		```一般模式: CJ2M-CPU3 \(\square: 270 \mu \mathrm{~s}\) * CJ2M-CPU1 \(\square: 160\) us * *: 脈衝 \(/ / O\) 模組安裝完成後, 應加上 \(10 \mu \mathrm{~s} x\) 的安裝數量。 使用CJ2M-CPU3 \(\square\) 型的EtherNet/IP標籤資料連結時, 應加上 \(100 \mu \mathrm{~s}+\) 傳輸CH數 \(\mathrm{x} 1.8 \mu \mathrm{~s}\) 。```				
	指令執行時間		基本指令： $: 0.04 \mu \mathrm{~s} \sim$ 應用指令： $: 0.06 \mu \mathrm{~s} \sim$				
	中斷	I／O中斷－外部中斷	$\begin{array}{ll}\text { 中斷任務的啟動時間 } & : 31 \mu \mathrm{~s} \\ \text { 回復到循環執行任務的復歸時間 } & : 10 \mu \mathrm{~s}\end{array}$				
			最短時間間隔： 0.4 ms （以 0.1 ms 的單位設定）				
		定時中斷	中斷任務的啟動時間 $: 30 \mu \mathrm{~s}$ 回復到循䍗執行任務的復歸時間 $: 11 \mu \mathrm{~s}$				
可連接之模組數			1個設備（CPU或增設的）10台。基本系統總共40台。				
	基本1／O模組						
	高功能／／O模組		最大96個機號（依模組的機種及設定而異：每台可分配1～8幾）				
	CPU高功能模組		CJ2M－CPU3 \square ：最多 15 台 CJ2M－CPU1 \square ：最多16台				
	脈衝1／O模組		最多2台＊ ＊CJ2M CPU模組 僅限使用模組Ver．2．0以上之模組				
	可使用中斷輸入功能的位置		CPU底板的插槽：0～4				
擴充的機櫃數			最大3				
ClO	輸出入繼電器		2560點（160 CH） $0000 \sim 0159 \mathrm{CH}$				
	資料連結繼電器		3200 點（200 CH）1000～1199CH				
	CPU高功能模組繼電器		6400點（400 CH）1500～1899CH				
	高功能模組繼電器		15360點（960 CH） $2000 \sim 2959 \mathrm{CH}$				
	脈衝I／O緮電器		輸入20點，輸出12點（2960～2963 CH）				
	序列PLC連結繼電器		1440點（90 CH）3100～3189CH				
	DeviceNet繼電器		9600 點（600 CH）3200～3789CH				
內部輔助繼電器	頻道 I／O（CIO）區		3200 點（200 CH）1300～1499 CH，37504點 2344 CH ） $3800 \sim 6143 \mathrm{CH}$ 無法進行外部輸入及輸出				
	W 繼電器		8192 點（512 CH）W000～W511 CH無法進行外部輸入及輸出				
保持繼電器			8192 點（ 512 CH ） $\mathrm{H} 000 \sim \mathrm{H} 511 \mathrm{CH}$ 僅能在程式中使用，斷電復歸或模式切換時均會維持在ON／OFF H512～H1535為功能區塊專用的繼電器（僅能設定為FB實體區塊（變數的內部分配範圍））				
特殊輔助繼電器			可讀取／禁止寫入：31744點（1984 CH） - 7168點（448 CH）A000～A447CH - 24576點（1536 CH）A10000～A11535CH＊ 可讀取／可寫入：16384點 $(1024 \mathrm{CH})$＊ ＊A960～A1471 CH及A10000～A11535 CH無法由不支援CJ2 CPU模組的CPU高功能模組，高功能／／O模組， 顯示器，軟體等進行連接。				
暫時記憶繼電器			16點 TR0～15				
計時器			4096點 T0000～T4095（和計數器不同）				
計數器			4096點 C0000～C4095（和計時器不同）				
資料記憶體			32k words＊ - 高功能／／O模組專用DM區：D20000～D29599（100 CH x 96號機） - CPU高功能模組專用DM區：D30000～D31599（ $100 \mathrm{CH} \times 16$ 號裝置） ＊可指定位元位址。但無法透過不支援CJ2 CPU模組的CPU高功能模組，高功能／／O模組，顯示器，軟體等進行位元運接。				
擴充資料記憶體			32K字元／1 Bank x 1～最大4 Bank：E00＿00000～最大E3＿32767＊ ＊可指定位元位址。但無法透過不支援CJ2 CPU模組的CPU高功能模組，高功能／／O模組，顯示器，軟體等進行位元運接。				
			32 K words $\times 1$ bank			32 K words $\times 4$ banks	
	可執行強制設定／重置的區域＊1		Bank 0			Bank 0～3	
索引（Index）暫存器			$\begin{aligned} & \text { IR0~15 } \\ & \text { 可儲存l/O記憶體矉際位址, 以便讓暫存器間接定址之專用暫存器。(可選擇讓各任務獨立/各任務之間可共用) } \end{aligned}$				
執行週期的任務旗標			128點				
記憶卡			128 MB， $256 \mathrm{MB}, 512 \mathrm{MB}$				
動作模式							

[^0]

[^1]
CJ2M－CPU3 $\square /-\mathrm{CPU1} \square /-\mathrm{MD} 21$

項目			CJ2M				
			CPU11／31	CPU12／32	CPU13／33	CPU14／34	CPU15／35
	週邊設備（USB）通訊埠		符合USB 2.0 B 接頭				
	傳送速度		最大 12 M 位元／s				
	傳送距離		最大 5 m				
	序列埤		- CJ2M－CPU1 \square 型 ：介面 ：符合EIA RS－232C - CJ2M－CPU3 \square 型：出廠預設為無序列埠 可加裝下列序列選購板。 - RS－232C選購板：CP1W－CIF01型 - RS－422A／485選購板：CP1W－CIF11型（非隔離類型，最長傳送距離 50 m ） - RS－422A／485選購板：CP1W－CIF12型（隔離類型，最長傳送距離 500 m ）				
	通訊方式		半雙工（Half－duplex）				
	同步方式		非同期方式				
	傳送速度		0．3／0．6／1．2／2．4／4．8／9．6／19．2／38．4／57．6／115．2（k位元／s）				
	傳送距離		最大 15 m				
	EtherNet／IP埠＊ 6		－				
		媒體存取方式	CSMA／CD				
		調變方式	基頻				
		傳送路徑之形式	星型				
		傳送速度	100M 位元／s（100BASE－TX）				
		傳送媒體	雙絞線（附隔離線：STP）：安全類別 5，5e				
		傳送距離	100 m 集線器與筆記型電腦之間的距離				
		串接（Cascading connection）數	使用交換式集線器時，無串接數限制				
		CIP服務：標䈅資料連結（循環通訊）	－				
		連接數	32				
		封包間隔（更新週期）	$1 \sim 10000 \mathrm{msec}$（ 0.5 msec 單位） 可依連線別分別設定（無論節點數多寡，皆可根據設定的週期，於線路上進行資料更新）				
		模組之容許通訊頻段	$3,000 \mathrm{pps} * 7$				
通訊		可登錄的標籤數量	32				
		標䈅種類	CIO，DM，EM，HR，WR，網路變數				
		每1次連線（＝1個标䈅組）時的標䈅數	8 （當標籤組內含PLC狀態的資料時為7）				
		每1個節點的最大資料連結量	640 CH				
		每1條連線的最大資料量	20 CH （可保證每1條連線中的資料均能具備同時性）				
		可登錄之標籤組數	32 （1次連線＝1個標籤組）				
		1個標䈅組的最大資料量	20 （當標籤組內含PLC狀態的資料時，將會佔用相當於 1 CH 的大小）				
		CPU模組在每1個週期可更新的最大標籤數＊8	輸出／傳送（CPU \rightarrow EtherNet／IP）時： 32輸入／接收（EtherNet／IP \rightarrow CPU）時： 32				
		CPU模組在每 1 個週期可更新的最大資料容量＊8	輸出／傳送（CPU \rightarrow EtherNet／IP）時：640CH輸入／接收（EtherNet／IP \rightarrow CPU）時：640CH				
		於運作時變更標籤資料連結之參數設定	可＊9				
		多點傳播（Multicast）封包過濾功能＊10	可				
		CIP服務：Explicit訊息	－				
		Class3（連線型）	連接數： 128				
		UCMM（非連線型）	可同時通訊之最大用戶端（Client）數量：16可同時通訊之最大伺服端（Server）數量：16				
		CIP路由（Routing）	可 可執行CIP路由的對象模組如下 CJ1W－EIP21，CJ2H－CPU6 \square－EIP，CJ2M－CPU3 \square ，and CS1W－EIP21。				
		FINS服務	－				
		FINS／UDP	可				
		FINS／TCP	最多16組連接				
		EtherNet／IP之一致性測試（Conformance Test）	符合A5				
		EtherNet／IP介面	10Base－T／100Base－TX Auto Negotiation／固定設定				

＊6．僅內建於CJ2M－CPU3 \square 型內。

＊7．代表封包數（Packet Per Second：PPS），也就是每秒可處理之傳送，接收封包數。
＊8．一旦超過最大數量，則會在更新CPU模組時同時跨越多個週期。
＊9．在變更參數時，做為變更對象的EtherNet／IP埠將會重新啟動，因此請特別注意。且在與變更對象進行通訊的其他節點上，通訊會暫時變更為逾時狀態，之後才會自動復歸。
＊10．由於EtherNet／IP通訊埠已經支援了IGMP用戶（Client），因此只要使用支援IGMP Snooping交換式集線器，即可過濾掉多餘的多點傳送封包。

功能規格

功能				功能說明
週期時間管理功能	週期時間固定化功能			週期時間固定功能（ $0.2 \sim 32,000 \mathrm{~ms}: 0.1 \mathrm{~ms}$ 單位）可在運轉中改變週期的固定時間。
	週期時間監控功能			週期時間監視功能（ $0.01 \sim 40,000 \mathrm{~ms}: 0.01 \mathrm{~ms}$ 單位）。
	背景處理功能			此功能可針對執行時間較長的指令語言，將其分割為跨多個週期之形式後再執行，藉此降低週期時間差異。
模組（輸出入）管理功能	基本 $1 / \mathrm{O}$ 模組／高機能／（O模組／ CPU高機能模組共通	1／O更新功能	循環更新功能	透過循環的方式更新基本I／O，高功能／／O，CPU高功能模組。
			即時更新功能	利用即時更新指令更新 $1 / \mathrm{O}$ 。
			利用I／O更新指令以執行更新之功能	利用I／O更新指令更新I／O。
		電源ON時的阻件辨識功能		於電源ON時，顯示出已辨識完成之模組台數。
	基本1／O模組	輸入回應時間設定功能		可設定輸入基本 I／O 模組的常數。 設定的數值愈大時，就愈不容易受到輸入接點抖動（Chattering）或是干擾所影響；而數值愈小時，則能夠檢測到較短的脈衝輸入。
		負載斷路功能		在「運轉」或「監控」模式出現異常時，會將／／O的所有輸出模組關閉。
		基本I／O狀態監控功能		讀取基本 I／O 警報資訊。讀取已辨識完成的模組數量。
		特定模組專用命令之資料讀取／寫入功能		此功能可透過針對特定高機能模組的特別專用命令來僅針對必要之資料進行高速讀取／寫入。
	高功能／／O模組， CPU高功能模組	模組重新啟動功能		此功能可用來重新啟動高功能／／O模組，CPU高功能模組。
	架構管理功能	電源ON時自動／／O配置功能		無需登錄／／O資料表，只要將頻道編號配置至已安裝完成的基本I／O模組，即可進入運轉狀態。
		I／O資料表新增功能		儲存模組的組成狀態後，即可防止架構變更，確保可用的頻道，以及設定頻道編號等。
		機櫃／插槽的前項位址設定功能		可任意設定機櫃以及插槽的前項頻道編號。
記憶體管理功能	可於變更運轉模式時維持設定內容			可於切換動作模式或是電源 ON 時，維持 I／O 記憶體區域之內容。可於切換動作模式或是電源ON時，維持強制設定／重置之狀態。
	檔案記憶體功能			可將檔案（程式檔，資料檔，變數資料表檔案等）儲存於記憶卡，EM檔案記憶體或是指令記憶體中。
	快閃記憶體自動備份功能			可將使用者程式，參數區域等內容自動備份至快閃記憶體之中。
	EM區域檔案功能			可將EM區域做為檔案記憶體處理之功能。
	指令記憶功能			可將包含I／O指令的變數資料表檔案記憶於記憶卡，EM檔記憶體之中。
	EM記憶體配置功能			可將EM區域設定在追蹤記憶體或EM檔案記憶體中。
記憶卡功能	電源ON時自動傳送功能			可在電源ON時自動讀取記憶卡中的程式或是設定檔。
	程式替換功能			可在運轉時將整個使用者程式從記憶卡讀取至CPU模組。
	記憶卡讀取／寫入功能			可將 CPU 模組 I／O 記憶卡中的資料，以 CSV／TXT 格式寫入至記憶卡中。反之，也可將記憶卡中CSV／TXT格式之資料讀至CPU模組的 $1 / O$ 記憶卡中。

CJ2M－CPU3 $\square /-\mathrm{CPU1} \square /-\mathrm{MD} 21$

功能			功能說明
通訊功能			－
	週邊設備（USB）通訊埠	Tool Bus	用來與PC內部的各種支援工具互相通訊。可執行高速通訊。
	序列埠（選購）＊11		僅限裝有序列通訊選購板時才能使用。
	上位連結（SYSWAY）通訊功能		可從上位電腦或是PT發送上位連結指令及上位連結標頭（Header）／標尾（Terminator）封包中 FINS指令，並對PLC的I／O記憶體或動作模式等進行讀寫動作。
	非程序（Non－procedure）通訊功能		利用通訊埠輸出入指令（TXD／RXD指令等），即可和條碼讀取機，印表機等週邊裝置進行資料傳送及接收。
	$N T$ 連結通訊功能		將PLC的／／O記憶體內部對應至PT的狀態控制區域，狀態通知區域，以及每個觸控式開關，顯示燈，記憶體資料表等物件配置完成後，即可直接進行連結。
	Tool Bus		用來與 PC 內部的各種支援工具互相通訊。可執行高速通訊。
	序列閘道（Serial gateway）功能		可將接收到的FINS自動轉換為CompoWay／F。
	序列PLC連結機能		不須使用程式即可使用序列埠進行 CPU 模組間的資料交換。亦可使NT連結（1：N模式）上所設定的PT與線路上混合存在。
	EtherNet／IP埠＊12		$\begin{aligned} & \text { 100Base-TX/10Base-T } \\ & \text { 通訊協定: TCP/IP, UDP, ARP, ICMP (僅 ping) , BOOTP } \\ & \text { 應用: FINS, CIP, SNTP, DNS (用戶) , FTP (伺服) } \\ & \hline \end{aligned}$
	CIP通訊服務	標䈅資料連結	利用非程式方式，即可與EtherNet／IP網路上的裝置進行週期性資料交換。
		訊息通訊	可與EtherNet／IP網路上的裝置進行任意的CIP指令接收動作。
	FINS通訊服務	訊息通訊	可與EtherNet／IP網路上的裝置進行任意的FINS指令傳送／接收動作。
中斷功能	定時中斷功能		此功能可利用一定的時間間隔來執行任務（最短為 $0.2 \mathrm{~ms}, ~ 0.1 \mathrm{~ms}$ 單位設定）。
	利用MSKS命令重新啟動		執行MSKS命令後，可以重新啟動內部計時器，使首次中斷開始時間固定。
	顯示根據MSKS命令的內部計時器現在數值		藉由MSKR命令來讀取從定時中斷啟動時點或上次定時中斷時點起算後的經過時間。
	斷電中斷功能		可在電源OFF（斷電）時執行任務之功能。
	1／O中斷功能		可在配置輸入的模組接收到輸入訊號時執行任務。
	外部中斷功能		可在高功能／／O模組，CPU高功能模組提出中斷要求時，執行任務之功能。
時計功能	時計功能		可顯示時間之功能。 精確度（精確度將依溫度條件而改變。） 環境溫度 $55^{\circ} \mathrm{C}$ ：每月誤差 -3.5 分 $\sim+0.5$ 分 環境溫度 $25^{\circ} \mathrm{C}$ ：每月誤差 -1.5 分 $\sim+1.5$ 分 環境溫度 $0^{\circ} \mathrm{C} \quad$ ：每月誤差－-3 分～＋1分
	運轉開始時間記錄功能		可記錄動作模式進入「運轉」或是「監控」模式的時間。
	運轉停止時間記錄功能		可記錄發生運轉停止異常時，或是動作模式進入「程式」模式時的時間。
	運轉ON時間記錄功能		可記錄電源進入ON狀態時的時間。
	運轉OFF（斷電）時間紀錄功能		可記錄電源進入OFF狀態時的時間。
	通電時間累計功能		以10小時為單位，記錄累計通電時間之功能。
	電源ON時間履歷記錄功能		可記錄電源進入ON狀態時的時間履歷。
	使用者程式寫入時間		可記錄使用者程式改寫之時間。
	參數區域寫入時間		可記錄參數區域改寫之時間。
電源管理功能	停電維持功能		維持型繼電器，資料記憶體，擴充資料記憶體，計數器旗標，現在值等內容之維持功能。此外，若將特殊輔助繼電器的 $/$／O 記憶體維持旗标設定為 ON，並利用PLC系統設定，當電源 ON時的／O記憶體維持旗標設定為啟動後，即可維持CIO區域，內部輔助繼電器，部分特殊輔助繼電器，計時器旗標／現在值，索引暫存器（Index Registor），資料暫存器等之設定值。
	斷電檢測時間設定功能		可設定檢測斷電的時間。 AC 電源：10～25 ms（不確定） DC電源：2～5 ms（CJ1W－PD022型）／2～20 ms（CJ1W－PD025型）
	斷電檢測時間延長功能		可延長檢測斷電的時間 $0 \sim 10 \mathrm{~ms}$ （CJ1W－PD022型禁止使用本功能）
	斷電發生次數計數功能		可計算斷電發生的次數。

[^2]| 功能 | | | 功能說明 |
| :---: | :---: | :---: | :---: |
| 功能區塊功能 | | | 將定型化的程式濃縮為功能區塊，並將其封裝（Capsule）化。 |
| | 功能區塊定義中可使用之語言 | | 階梯程式語言，ST語言。 |
| 除錯功能 | 線上編輯功能 | | 可在運轉時（「監控」模式或「程式」模式下）變更程式之功能（空白程式（Block program）區域除外）。 |
| | 強制設定／重置功能 | | 可設定／重置特定位元。
 可根據設定來進行EM指定儲存區塊之後的強制設定／重新設定。 |
| | 微分監控功能 | | 可監控接點啟動。 |
| | 資料追蹤功能 | | 可將所指定的I／O記憶體資料儲存於CPU內部的追蹤記憶體之中。可用來設定觸發條件。 |
| | 連續追蹤功能 | | 利用CX－Programmer，即可在追蹤時叫出追蹤資料。因此，只要持續叫出追蹤資料，便能夠連續進行資料記錄。 |
| | 開始運轉時的追蹤自動執行功能 | | 可在運轉開始時（「程式」模式 \rightarrow 變更為「監控」／「運轉」模式），自動進行追蹤。 |
| | 錯誤發生時之停止位置儲存功能 | | 可在程式錯誤發生時，儲存停止位置的種類與任務編號。 |
| | 程式檢查功能 | | 可在運轉開始時，執行無END指令或是指令異常等程式檢查之功能。 |
| 自我診斷，復原功能 | 異常記錄 | | 可儲存CPU模組事先定義的錯誤代碼，異常內容，異常發生時間之功能。 |
| | CPU異常告知功能 | | 可檢測CPU模組的看門狗計時器（Watch dog timer）。 |
| | 故障診斷使用者定義功能 | | 可由使用者自行定義必須判斷為故障之條件狀況持續運轉（FAL），運轉停止（FALS）
 1組電路時間診斷，1組電路邏輯診斷（FPD指令） |
| | 負載斷路功能 | | 可將所有輸出模組的輸出OFF之功能。 |
| | 運轉中輸出功能 | | 可在「運轉」「監控」模式下，將CJ1W－PA205R型的接點ON之功能。 |
| | 基本I／O負載短路檢測功能 | | 可針對配備負載短路保護功能的基本／／O警報功能進行檢測。 |
| | 故障點檢測功能 | | 可針對特定電路執行時間監控診斷及邏輯診斷（FPD指令）。 |
| | CPU待機時異常檢測功能 | | 在「運轉」或「監控」模式下將電源ON時，可顯示正在辨識高功能／／O模組及CPU高功能模組之訊息。 |
| | 運轉持續異常檢測功能 | FAL指令異常檢測功能（使用者定義運轉持續異常） | 讓使用者能夠透過自行定義的條件，在程式上啟動運轉持續異常指令（FAL）。 |
| | | 重複更新異常檢測功能 | 每次配置任務所執行的更新指令與週期執行任務的I／O更新出現重複時，此功能將發生作用。 |
| | | 基本 $1 / \mathrm{O}$ 異常檢測功能 | 當基本I／O模組發生異常時此功能將發生作用。 |
| | | 備份記憶體異常檢測功能 | 當用來備份使用者程式或參數區域的記憶體（（備份記憶體）檢測出異常時，此功能將發生作用。 |
| | | PLC系統設定異常檢測功能 | 當PLC系統設定值出現異常時，此功能將發生作用。 |
| | | CPU高功能異常檢測功能 | 當CPU模組與CPU高功能模組之間的資料交換出現異常時，此功能將發生作用。 |
| | | 高功能／／O異常檢測功能 | 當CPU模組與高功能／／O模組之間的資料交換出現異常時，此功能將發生作用。 |
| | | 標籤記憶體異常檢測功能＊13 | 當標籤記憶體檢測出異常時，此功能將發生作用。 |
| | | 電池異常檢測功能 | 當電池容量過低或是未連接電池時，此功能將發生作用。 |
| | | CPU高功能模組設定異常檢測功能 | 針對登錄／O資料表中所登錄的CPU高功能模組，若其種類不同於實際 $/ / O$ 資料表中的CPU高功能模組之種類，此功能將發生作用。 |
| | | 高功能／／O模組設定異常檢測功能 | 針對登錄／／O資料表中所登錄的高功能／／O模組，若其種類不同於實際／O資料表中的高功能／／O模組之種類，此功能將發生作用。 |
| | | 選購板異常檢測功能＊13 | 序列選購板的安裝狀態有異常時，此功能將發生作用。 |

[^3]| 功能 | | | 功能說明 |
| :---: | :---: | :---: | :---: |
| 自我診斷，復原功能 | 運轉停止異常檢測功能 | 記憶體異常檢測功能 | 可檢測出記憶體異常之情況。 |
| | | I／O匯流排異常檢測功能 | 當CPU模組與各模組之間的資料傳送出現異常時，或是末連接端子外蓋時，此功能將發生作用。 |
| | | 編號重複使用錯誤檢測功能 | 當模組的機號重複，基本 $1 / O$ 模組的配置頻道重複，或是增設裝置的機櫃編號重複時，此功能將發生作用。 |
| | | I／O點數過多檢測功能 | 登記I／O資料表的I／O點數過多時，每個機櫃可連接的模組數過多時，脈衝I／O模組的安裝台數過多時，此功能將發生作用。 |
| | | 1／O設定異常檢測功能 | 當登錄／／O資料表的資訊與實際安裝的模組相異時，或是中斷輸入模組被安裝至CPU裝置0～4插槽以外的位置時，此功能將發生作用。 |
| | | 程式錯誤檢測功能 | 本功能會在程式內容發生異常時進行檢測。詳細內容如下。 |
| | | 指令處理錯誤檢測功能 | 執行指令時，一旦輸入資料的數值不正確，或是企圖跳過任務直接執行指令時，此功能將發生作用。 |
| | | 間接指定BCD錯誤檢測功能 | 利用DM／EM間接指定（BCD模式）的方式後，若該值並非BCD值，此功能將發生作用。 |
| | | 不正確區域存取錯誤檢測功能 | 當運算元指令企圖在不正確的區域進行存取時，此功能將發生作用。 |
| | | 無END指令檢測功能 | 當程式內部不存在END指令時，此功能將發生作用。 |
| | | 任務錯誤檢測功能 | 出現以下任一種狀況時，此功能將發生作用。
 - 週期中沒有任何可執行的任務。
 - 沒有任何已配置為任務的程式。
 - 雖然配置任務執行條件已成立，但可對應之機號的配置任務並不存在。 |
| | | 微分超過檢測功能 | 利用線上編輯方式反覆進行微分指令的插入／刪除時（131072次以上），此功能將發生作用。 |
| | | 不當指令檢測功能 | 企圖執行非系統所定義的指令資料時，此功能將發生作用。 |
| | | 超過使用者程式區域檢測功能 | 如將指令儲存在超出使用者程式區域最後位址之處，則會在執行該指令時啟動本功能。 |
| | | 超過週期時間檢測功能 | 可監控週期時間（ $10 \sim 40,000 \mathrm{~ms}$ ），一旦超過設定值時，就會停止運轉。 |
| | | FALS指令異常檢測功能（使用者定義運轉停止異常） | 讓使用者能夠透過自行定義的條件，在程式上啟動運轉停止異常指令（FALS）。 |
| | | 版本異常檢測功能 | 當使用者程式中出現本模組版本所無法支援的功能時，此功能將發生作用。 |
| | | 卡片傳輸異常檢測功能 | 當記憶卡執行自動啟動（Autoboot）功能失敗時，此功能將發生作用。 |
| 維修功能 | 簡易備份功能 | | 用來將CPU模組（使用者程式，參數，I／O記憶體）資料以及每台高功能模組內部備份資料全數進行備份的功能。 |
| | 和上位連結電腦之間的傳送功能 | | 此功能可讓PLC端在必要時藉由網路通訊指令對於使用上位連結的電䐉發出FINS指令。 |
| | 遥控程式／監控功能 | | 利用上位連結方式，由 Controller Link，Ethernet，DeviceNet，SYSMAC LINK 端的 PLC 執行遙控程式／監控之功能
 執行 FINS 訊息時，可跨越網路階層進行通訊。
 Controller Link，Ethernet：跨越 8 階層
 DeviceNet，SYSMAC LINK ：跨越3階層 |
| | 自動連線功能 | 序列方式直接連線 | 利用序列方式（週邊設備（USB）通訊埠，序列埠）直接連接至CX－Programmer時，即可與PLC自動連線之功能。 |
| | | 透過網路 | 可將CX－Programmer與連接至EtherNet／IP網路上的PLC連線之功能。 |
| 安全功能 | 密碼，保護功能 | | 可在讀取使用者記憶體，任務時啟動保護之功能。防止覆寫：可利用指撥開關設定防止讀取：可利用CX－Programmer設定密碼 |
| | FINS寫入保護功能 | | 利用網路上的FINS指令，即可執行禁止寫入處理之功能。 |
| | PLC命名功能 | | 為CPU模組加上任意的名稱後，即可在連線時進行比對，以防止錯誤連接。 |
| | 利用批號鎖定特定硬體之功能 | | 使用輸出至特殊輔助繼電器的批量編號，即可透過使用者程式來識別硬體，並啟動動作保護功能。 |

脈衝 $1 / 0$ 模組規格

CJ2M CPU模組 模組Ver．2．0以上版本只要加裝脈衝 $1 / O$ 模組，就能使用下列的脈衝 $1 / O$ 功能（平均每台脈衝 $/ / O$ 模組的最大輸入為 10 點，輸出為 6 點）。

- 輸入可作為共用輸入，中斷輸入，脈衝擷取，高速計數，原點搜尋用的輸入訊號使用。
- 輸出可作為共用輸出，脈衝輸出，原點搜尋用輸出信號及PWM輸出使用。

安裝1台時
脈衝 1 O區塊

CJ2M CPU模組 （簡易型，標準型）

安裝2台時

註：從接近CPU模組處開始分別為
「脈衝／／O區塊0」「「脈衝I／O區塊1」。

性能規格

項目		功能說明
脈衝1／O	1／O區塊型式	CJ2M－MD211型（Sink 輸出型） CJ2M－MD212型（Source輸出型）
	外部介面	MIL 40接卻接頭
	輸入	可作為共用輸入，中斷輸入，脈衝擷取輸入，高速計數器輸入使用。（可透過PLC系統設定來切换端子功能）輸入方式：線路驅動器輸入或DC24V輸入（可依配線進行切換）
	共用輸入	最大 20 點（平均每個脈衝 I／O 模組 10 點） 輸入時常數：可透過PLC系統設定進行選擇（0，0．5，1，2，4，8，16，32 ms）原始設定值為 8 ms
	中斷輸入，脈衝傾取輸入	最大 8 點（平均每個脈衝 I／O 模組 4 點） 輸入信號的最小脈衝幅度： 30μ S以上
	高速計數器輸入	最大 4 點（平均每個脈衝 I／O 模組 2 點） 輸入方式：相位差（4 倍頻）脈衝，脈衝＋方向，加減法脈衝，加法脈衝 最高回應頻率：相位差 50 kHz 或單相 100 kHz 數值範圍模式：線性模式，環狀模式 計數值： 32 位元 計數器重置：Z 相信號＋軟體復歸，軟體復歸 控制方式：目標值一致比較，頻寛比較 閘功能：有
	輸出	可作為共用輸出，脈衝出力，PWM 輸出使用（透過 PLC 系統設定來切換端子功能）輸出方式：電晶體Sink輸出或Source輸出（依／／O區塊的機種進行選擇）
	共用輸出	最大12點（平均每個脈衝I／O模組6點）
	脈衝輸出	最大 4 點（平均每個脈衝 I／O 模組 2 點） 輸出方式：CW／CCW，脈衝＋方向（依配線及階梯命令進行選擇） 輸出頻率： $1 \mathrm{pps} \sim 100 \mathrm{kpps}$（以 1 pps 的單位進行指定） 輸出模式：連續模式（控制速度用），單獨模式（控制位置用） 輸出脈衝數：相對座標指定 $00000000 \sim 7 F F F F F F F$ Hex（ $0 \sim+2147483647$ ） 加減速曲線：梯形，S 形 紹對座標指定 $80000000 \sim 7$ FFFFFFF Hex（ $-2147483648 \sim+2147483647$ ） 原點搜尋功能：有
	PWM輸出	最大 4 點（平均每個脈衝 I／O 模組 2 點） 輸出頻率： $0.1 \sim 6553.5 \mathrm{~Hz}(0.1 \mathrm{~Hz}$ 單位）， $1 \sim 32,800 \mathrm{~Hz}(1 \mathrm{~Hz}$ 單位 $)$ 負載比： $0.0 \sim 100.0 \%$（ 0.1% 單位進行指定）

功能梘格

功能			功能說明
脈衝 $1 / O$ 功能	輸入功能	共用輸入	於／／O更新時讀取輸入信號，之後再反映到／／O記億體。
		中斷輸入	於開啟或關閉輸入信號的時間點啟動中斷任務。
		脈衝擷取輸入	將比週期時間更短的脈衝訊號讀取作為輸入訊號後，再反映至I／O記憶體中。
		高速計數器輸入	計算高速脈衝訊號。亦可啟動中斷任務。
	輸出功能	共用輸出	於／／O更新時，此功能將會隨著I／O記憶體的內容而輸出。
		脈衝輸出	利用指定頻率，脈衝數來輸出固定負荷比（50\％）脈衝訊號。
		PWM輸出	輸出已指定負載比之脈衝訊號。
	原點搜尋功能		以原點搜尋參數指定的模式為準，實際上一邊執行脈衝輸出的同時，也以原點，接近原點的輸入訊號為條件，進而確定機械原點。（組合脈衝輸入及脈衝輸出使用）
中斷功能	輸入中斷功能		配合脈衝I／O模組中斷輸入或高速計數器輸入而執行任務。
	輸入中斷		此功能可在中斷輸入由 OFF 變成 ON 或從 ON 變成 OFF 時執行中斷任務。 直接模式：此功能可根據每個輸入訊號的變化來執行中斷任務。 計數模式：此功能可利用加法或減法來計算輸入訊號的變化，在計數時執行中斷任務。（最高回應頻率： 3 kHz）
	高速計數器中斷		於高速計數器原先設定的比較條件成立時，執行中斷任務目標值一致：與指定值一致時執行中斷任務。 頻寬比較：進入指定值範圍或超出範圍時執行中斷任務。

脈衝l／O模組之繼電器分配區域

1／O區塊編號 0 （右方）

接點記號			IN 00	IN 01	IN 02	IN 03	IN 04	IN 05	IN 06	IN 07	IN 08	IN 09	OUT 00	OUT 01	OUT 02	OUTO 3	OUT 04	OUT 05
位址			2960										2961					
位元			0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5
輸入	共用輸入		共用 輸入0	共用 輸入1	共用 輸入2	共用 輸入3	共用 輸入4	共用 輸入5	共用 輸入6	共用 輸入7	共用 輸入8	共用 輸入9	－－－	－－－	－－－	－－－	－－－	－－－
	中斷輸入（直接模式／計數器模式）		中斷輸入 0	中斷輸入 1	中斷輸入 2	中斷輸入 3	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－
	脈衝擷取		脈衝擷取 0	脈衝擷取 1	脈衝擷取 2	脈衝擷取 3	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－
	高速計數器		－－－	－－－	高速計數器 1 （Z相／復歸）	高速計數器 0 （Z相／復歸）	－－－	－－－	高速計 數器1（A 相／加法／ 計數輸 入）	高速計 數器1（B 相／減方／ 方向輸 入）	高速計 數器0（A 相／加法／ 計數輸 入）	高速計數器0（B相／減方／方向輸入）	－－－	－－－	－－－	－－－	－－－	－－－
輸出	共用輸出		－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	共用輸 出0	共用輸出1	$\begin{aligned} & \text { 共用輸 } \\ & \text { 出2 } \end{aligned}$	共用輸出3	共用輸 出4	共用輸出5
	脈衝輸出	CW／CCW	－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	$\begin{array}{\|l} \hline \text { 脈衝輸 } \\ \text { 出0 } \\ \text { (CW) } \end{array}$	$\begin{array}{\|l\|} \hline \text { 脈衝輸 } \\ \text { 出 } \\ \text { (CWW) } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { 脈衝輸 } \\ & \text { 出1 } \\ & \text { (CW) } \end{aligned}$	$\begin{array}{\|l} \hline \text { 脈衝輸 } \\ \text { 出1 } \\ \text { (CCW) } \\ \hline \end{array}$	－－－	－－－
		脈衝+方 向	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	脈衝輸出0（脈衝）	脈衝輸出1（脈衝）	$\begin{aligned} & \text { 脈衝輸 } \\ & \text { 出0(} \\ & \text { 向) } \end{aligned}$	脈衝輸出1（方向）	－－－	－－－
		可變負載比脈衝輸出（PWM輸出）	－－－	－－－	－－－	－－－	－－－	－－－	－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	PWM輸出 0	PWM輸出 1
原點搜尋			原點搜尋 0 （原點輸入訊號）	原點搜尋 0 （原點近旁輸入訊號）	原點搜尋 1 （原點輸入訊號）	原點搜尋 1 （原點近旁輸入訊號）	原點搜 尋0（定 位完成 訊號）	原點搜 尋1（定 位完成 訊號）	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	原點搜尋0（偏差計數重置輸出）	原點搜 尋1（偏 差計數 重置輸 出）

I／O區塊編號1（左方）

接點記號			IN 10	IN 11	IN 12	IN 13	IN 14	IN 15	IN 16	IN 17	IN 18	IN 19	OUT 10	OUT 11	OUT 12	OUT 13	OUT 14	OUT 15
位址			2962										2963					
位元			0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5
輸入	共用輸入		$\begin{array}{\|l\|} \hline \text { 共用 } \\ \text { 輸入 } 10 \end{array}$	共用 輸入11	共用輸入12	共用輸入13	$\begin{array}{\|l\|} \hline \text { 共用 } \\ \text { 輸入14 } \end{array}$	共用輸入15	$\begin{array}{\|l\|} \hline \text { 共用 } \\ \text { 輸入16 } \end{array}$	共用輸入17	共用輸入18	$\begin{aligned} & \text { 共用 } \\ & \text { 輸入19 } \\ & \hline \end{aligned}$	－－－	－－－	－－－	－－－	－－－	－－－
	中檵輸入（直接模式／計數器模式）		$\begin{aligned} & \text { 中斷輸入 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 中斷輸入 } \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 中斷輸入 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { 中斷輸入 } \\ & \hline \end{aligned}$	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－
	脈衝擷取		$\left\lvert\, \begin{array}{\|l\|l} \text { 脈衝擷取 } \end{array}\right.$	\|脈衝傾取	$\begin{array}{\|l\|} \hline \text { 脈衝擷取 } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { 脈衝擷取 } \\ 7 \end{array} \\ \hline \end{array}$	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－
	高速計數器		4－	－－－	高速計數器 3 （Z相／復歸）	$\begin{aligned} & \text { 高速倝數器 } \\ & \text { 誰相) } \\ & \text { 復 } \end{aligned}$	－－－	－－－		高速計 數器3（B 相減方／ 方向輸 入）		高速計 數器2（B 相減方 $/ 2$ 方向輸 入）	－－－	－－－	－－－	－－－	－－－	－－－
輸出	共用輸出		－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	共用輸出6	共用輸出7	共用輸 出	$\begin{array}{\|l\|} \hline \text { 共用輸 } \\ \text { 出 } \end{array}$	$\begin{aligned} & \hline \text { 共用輸 } \\ & \text { 出10 } \end{aligned}$	共用輸 出11
	$\begin{aligned} & \text { 脈衝 } \\ & \text { 輸出 } \end{aligned}$	cw／ccw	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	$\begin{aligned} & \text { 脈衝輸 } \\ & \text { (CW) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 㭽衝輸 } \\ & \text { (2CW) } \\ & \text { (CCW } \end{aligned}$	$\begin{aligned} & \text { 脈衝輸 } \\ & \text { (CW) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 脈衝輸 } \\ & \text { (} \mathrm{CCW}) \\ & \hline \end{aligned}$	－－－	－－－
		$\begin{aligned} & \text { 脈衝+方 } \end{aligned}$	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	脈衝輸出2（脈衝）	脈衝輸出3（脈衝）	脈衝輸出2（方向）	脈衝輸 出3（方 向）	－－－	－－－
		可變負載比脈㣫輸出（PWM輸出	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	PWM輸出 2	PWM輸出 3
原點搜尋				原點搜尋 2 （原點近旁輸入訊號）		原點搜尋 3 （原點近旁輸入訊號）	原點搜尋2（定位完成訊號）	原點搜 尋3（定 位完成 訊號）	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－		原點搜 尋3（偏 差計數 重置輸 出）

脈衝 $1 / 0$ 模組輸入規格
中斷輸入

項目	直接模式	計數模式
中斷輸入點數	最大8點	
繼電器分配區域	2960 CH／2962 CH，位元00～03	
中斷檢測方式	啟動，關閉	
中斷任務編號	No． $140 \sim 147$（固定）	
計數方式	－－－	加法計算，減法計算（利用MSKS命令設定）
計數範園	－－－	0001 ～FFFF Hex（16 位元） （將設定值設定為A532～535／A544～547CH）
回應頻率	－－－	單相： $3 \mathrm{kHz} \times 8$ 點
中斷輸入（計數器模式）的現在數值保存位置	－－－	A536～A539／A548～A551

脈衝擷取輸入

項目	
脈衝傾取輸入點數	最大8點
㹸格	
重擷取輸入	可將比週期時間更短的 $30 ~ \mu \mathrm{~s}$ 處理為1個週期的ON訊號。

高速計數器輸入

項目	內容			
高速計數器輸入點數	最多4點（高速計數器0 $~ 3 ~) ~$			
脈衝輸入方式（計數模式）	加法脈衝輸入	相位差輸入（ $4 \times$ ）	加減法脈衝輸入	脈衝＋方向輸入
輸入訊號	加法脈衝	A相	加法脈衝	脈衝
	－－－	B相	減法脈衝	方向
	－－－	Z相	復歸	復歸
回應頻率及高速計數器點數	100 kHz 2 點 $\times 2$ 台	50 kHz 2 點 $\times 2$ 台	100 kHz 2 點 $\times 2$ 台	100 kHz 2 點 $\times 2$ 台
數值範圍模式	線性模式，環狀模式			
計數值	$\begin{array}{\|ll\|} \hline \text { 線性模式時: } & 80000000 \sim \text { 7FFFFFFF Hex } \\ & 00000000 \sim \text { FFFFFFFF Hex (加法脈衝時) } \\ \text { Ring模式時: } & 00000000 \sim \text { Ring設定值 } \\ \hline \end{array}$			
高速計數器現在數值的保存位置	高速計數器 0 ：A 271 CH （ 上位）／A270 CH（下位）高速計數器 1 ：A273 CH（上位）／A272 CH（下位）高速計數器 2 ：A317 CH（上位）／A316 CH（下位）高速計數器 3 ：A319 CH（上位）／A318 CH（下位）透過共同處理的時間點來更新所有週期欲讀取最新數值時，請利用PRV命令。			
	儲存資料型式：16進位8位數（BIN） －線性模式時：80000000～7FFFFFFF Hex 00000000 ～FFFFFFFFF Hex（加法脈衝時） －Ring模式時：00000000～Ring設定值			
控制方式 $\frac{\text { 目標值一致比較 }}{\text { 頻寞比較 }}$	最高可登錄48個目標值及中斷任務編號。			
	可登錄8個或最高32個上下限值，中斷任務編號。			
計數器重置方式	－Z相信號＋軟體復歸。 高速計數器重置旗標（A531．00～A531．03）為ON時，利用Z相訊號ON進行重置。 －軟體復歸。 藉由高速計數器重置旗標（A531．00～A531．03）ON進行重置。 重置高速計數器後，可選擇停止或繼續進行比較動作。			

脈衝／$/ O$ 模組輸出規格
定位，速度控制功能

項目	規格
脈衝輸出數	最多4點（脈衝輸出0～3）
輸出模式	連續模式（速度控制用）或單獨模式（位置控制用）
定位（單一模式）時的命令	PULS 指令＋SPED 指令 PULS 指令＋ACC 指令 PLS2指令
速度控制（連續模式）時的命令	SPED 指令 ACC指令
決定原點（原點搜尋，原點復歸）的命令	ORG指令
中斷固定尺寸傳輸命令	IFEED指令
輸出頻率	$1 \mathrm{pps} \sim 100 \mathrm{kpps}$（1 pps單位）2點 $\times 2$ 台。
頻率加減速比率	以 $1 \mathrm{pps} \sim 65,535 \mathrm{pps}$（每 4 ms ） 1 pps 單位設定只有在PLS2命令中才能進行加減速的個別設定。
命令執行中的設定值變更	可變更目標頻率，加減速比率，目標位置。
脈衝輸出方式	CW／CCW，脈衝＋方向
輸出脈衝數	相對座標指定：00000000～7FFFFFFFF Hex（加算／減算各方向：2147483647）絕對座標指定：80000000～7FFFFFFF Hex（ $-2147483648 ~ 2147483647$ ）
指定脈衝輸出現在值之相對／絕對座標	在ORG命令原點搜尋或INI命令脈衝輸出現在值變更時，將成為原點確定狀態並自動成為絕對座標。在原點未確定狀態下，將成為相對座標。
相對脈衝指定／絕對脈衝指定	可利用 PULS 命令或 PLS2 命令運算元進行指定。 脈㣫輸出現在值為絕對座標（原點確定狀態）時，便可指定絕對脈衝。相對座標（原點未確定狀態）時，無法指定絕對脈衝（會造成命令執行錯誤）。
脈衝輸出現值存放位置	特殊輔助繼電器 脈衝輸出 $0: ~ A 277 \mathrm{CH}$（前 4 位數）／A276 CH（後 4 位數） 脈衝輸出1：A279 CH（前 4 位數）／A278 CH（後 4 位數） 脈衝輸出 $2: \mathrm{A} 323 \mathrm{CH}$（前 4 位數）／A322 CH（後 4 位數） 脈衝輸出 $3: A 325 \mathrm{CH}$（前 4 位數）／A324CH（後 4 位數）於／／O更新時被更新。

可變負載比脈衝輸出（PWM）功能

	項目
PWM輸出數	最多4點（PWM輸出0～3）
負載比	$0.0 \% \sim 100.0 \% 0.1 \%$ 的單位設定
頻率	$0.1 \mathrm{~Hz} \sim 6,553.5 \mathrm{~Hz}(0.1 \mathrm{~Hz}$ 的單位設定 $)$ 或1 $\mathrm{Hz} \sim 32,800 \mathrm{~Hz} \mathrm{(1} \mathrm{~Hz} \mathrm{的 單 位 設 定} \mathrm{)}$ 輸出模式 指令 連續模式

硬體規格

共用輸入規格（IN00～09／IN10～19）
輸入規格

輸入		IN00～IN05／IN10～IN15	IN06～IN09／IN16～IN19	IN00～IN05／IN10～IN15	IN06～IN09／IN16～IN19
輸入格式		DC24V輸入		Line driver輸入	
輸入電流		6.0 mA（TYP．）	5.5 mA （TYP．）	13 mA （TYP．）	10 mA （TYP．）
輸入電壓的範圍		DC 24V +10\%/-15\%		依RS－422A線路驅動器（相當於AM26LS31）為準線路驅動器端的電源電壓在 $5 \mathrm{~V} \pm 5 \%$ 之內。	
輸入電阻		$3.6 \mathrm{k} \Omega$	$4.0 \mathrm{k} \Omega$	－－－	
電路數量		1共同／1電路			
ON電壓／電流		DC17．4V以上／3 mA以上		－－－	
OFF電壓／電流		DC5V以下／1 mA以下		－－－	
回應速度（共用輸入	ON回應時間	$8 \mathrm{ms以下}$（依PLC系統設定，可切換為0／0．5／1／2／4／8／16／32 ms）			
時）	OFF回應時間	$8 \mathrm{ms以下}$（依PLC系統設定，可切換為0／0．5／1／2／4／8／16／32 ms）			

電路結構

項目	
輸入	IN00～IN05／IN10～IN15
電路結構	

中斷輸入／脈衝擷取輸入規格（INOO～03／IN10～13）

項目	規格	
ON回應時間	$30 \mu \mathrm{~s}$ 以下	
OFF回應時間	150μ S以下	
回應脈衝		

高速計數器輸入（IN06～09／IN16～19）

共用輸出規格（OUT00～05／OUT10～15）

項目	規格	
輸出類型	Sink類型（CJ2M－MD211型）	Source類型（CJ2M－MD212型）
額定電壓	$5 \sim 24$ VDC	
使用負載電壓範圍	$4.75 \sim 26.4 \mathrm{VDC}$	
最大開關電流	0．3A／點，1．8A點／模組	
電路數量	6點（6點／共通）	
最大突波電流	3．0 A 點 $10 \mathrm{msw下}$	2．0 A／點 $10 \mathrm{msw下}$
漏電電流	0.1 mA以下	
殘留電壓	0.6 V 以下	
ON回應時間	0.1 ms以下	
OFF回應時間	0.1 ms以下	
保險絲	無	
外部供應電源（輸出用電源輸入）	DC10．2～26．4V $20 \mathrm{mA以上}$	
電路結構		

脈衝輸出（OUT00～03／OUT10～13）

項目	規格	
輸出類型	Sink類型（CJ2M－MD211型）	Source類型（CJ2M－MD212型）
額定電壓	$5 \sim 24 \mathrm{VDC}$	
使用負載電壓範園	4.75 ～26．4 VDC	
最大開關能力	30 mA	
最小開關能力	7 mA	
最大輸出頻率	100 kHz	
輸出波形		

＊ON，OFF代表輸出元件的ON，OFF。
PWM輸出（OUT04～05／OUT14～15）

項目	規格		
輸出類型	Sink類型（CJ2M－MD211）	Source 類型（CJ2M－MD212）	
額定電壓	$5 \sim 24 \mathrm{VDC}$		
使用負載電壓範圍	4.75 ～ 26.4 VDC		
最大開關能力	$\begin{aligned} & 300 \mathrm{~mA}(\sim 6.5535 \mathrm{kHz} \\ & 100 \mathrm{~mA},(6.5535 \mathrm{to} 32.8 \mathrm{kHz}) \end{aligned}$		
最大輸出頻率	$32,800 \mathrm{~Hz}$		
PWM輸出精度（ON脈衝幅在 $2 \mu \mathrm{~s}$ 以上時）	ON 負載 $-0.2 \% \sim+1 \% \sim 6.5535 \mathrm{kHz}$ 時。 $-1 \% \sim+5 \% \quad 32.8 \mathrm{kHz}$ 時。 （開閉電流為 30 mA 時）	ON 負載 $\pm 0.5 \%$ $\sim 6.5535 \mathrm{kHz}$ 時 $\pm 2.5 \%$ 32.8 kHz 時 （開閉電流為 30 mA 時）	
輸出波形			$\text { ON負載 }=\frac{\mathrm{t}_{\mathrm{ON}}}{\mathrm{~T}} \times 100 \%$

[^4]CJ2M－CPU3 \qquad $\square /-M D 21 \square$

模組版本種類

機種	型式	模組版本
CJ2M CPU模組	CJ2M－CPU3 \square	模組 Ver． 1.0 （內建EtherNet／IP部分：模組Ver．2．0） 模組 Ver． 2.0 （內建EtherNet／IP部分：模組Ver．2．0）
	CJ2M－CPU1 \square	模組 Ver． 1.0模組Ver． 2.0

不同模組版本支援功能一覽

模組Ver．2．0以上支援功能一覽

使用模組Ver．2．0新增功能時，CX－Programmer必須使用Ver．9．12以上版本。

			CJ2M CPU模組	
型式			CJ2M－CPU	
種			Ver．1．0以上的版本	
功能	模組版本	Ver．2．0以上的版本		\times
脈衝輸出入功能 $*$				

＊限定CJ2M CPU模組需Ver．2．0以上的版本，能安裝脈衝I／O模組。

模組版本與週邊工具之間的關係

模組版本和CX－Programmer版本之間具有下列關係。
模組版本與週邊工具之間的關係

CPU模組	使用的功能		必備之週邊工具			
			CX－Programmer			編程控制台
			Ver．9．0之前的版本	Ver．9．1以上的版本	Ver．9．12以上的版本	
CJ2M－CPU模組 ver． 1.0	模組Ver．1．0的功能		\times	$\bigcirc * 1$	\bigcirc	x＊3
CJ2M－CPU \square模組 ver． 2.0	模組Ver．2．0加強的功能	使用	\times	\times	\bigcirc	
		不使用	\times	＊2	\bigcirc	

＊1．如欲使用CJ2M CPU模組，則必須搭配CX－Programmer Ver．9．1以上的版本使用。
＊2．不使用升級所加強的功能時，就不需將CX－Programmer進行升級。
$* 3$ ．無法使用程式控制台。

PLC機種的下拉式選單

在CX－Programmer［PLC機種變更］對話框的［PLC機種］下拉式選單中並無模組版本的識別標示。所有模組版本均由下列之中選擇。

	CPU模組型式	CPU模組型式	CX－ProgrammerVer．9．1以上的［PLC機種變更］對話
框中的PLC機種清單標示			

外部介面

CJ2M（附EtherNet／IP功能）CPU模組 CJ2M－CPU3 \square 型
作為外部介面，CJ2M－CPU3 \square 具有2個通訊埠（外設（USB）埤／EtherNet／IP埠）。
在CJ2M CPU模組的左方加裝脈衝／／O模組後，便可使用脈衝 $/$／O功能。（最多2台）
此外，在選購板插槽中插入序列通訊選購板（另售）後，便可增加序列式通訊埠。

脈衝／O區塊（最多2台） （CJ2M－MD21 \square ）

CJ2M CPU模組 CJ2M－CPU1 \square 型
作為外部介面，CJ2M－CPU1 \square 型具有 2 個通訊埠（外部（USB）埠／序列通訊埠）。在CJ2M CPU模組的左方加裝脈衝I／O模組後，便可使用脈衝I／O功能。（最多2台）

脈衝 $1 / O$ 區塊（最多2台）
（CJ2M－MD21 \square ）

CJ2M－CPU3 $\square /-\mathrm{CPU1} \square /-\mathrm{MD} 21 \square$

週邊設備（USB）通訊埠

項目	
傳送速度	最大12M位元／s
瑼送距離	最大5 m
介面	符合USB 2．0 \quad B接頭
通訊協定	Tool Bus

EtherNet／IP埠

項目	
媒體存取方式	CSMA／CD
調變方格	
傳送路徑之形式	基頻
傳送速度	星型
傳送媒體	100M位元／s（100BASE－TX）
傳送距離	雙絞線（拊隔離線 $:$ STP）：安全類別 $5,5 \mathrm{e}$
串接（Cascading connection）數	100 m集線器與筆記型電腦之間的距離
通訊規格	使用交換式集線器時，無串接數限制。

內建序列埠（僅限CJ2M－CPU1 \square 型）
RS－232C接頭

項目	
通訊方式	半雙工（Half－duplex）
同歩方式	非同期方式
傳速度	$0.3 / 0.6 / 1.2 / 2.4 / 4.8 / 9.6 / 19.2 / 38.4 / 57.6 / 115.2 \mathrm{k}$ 位元／秒 $(*)$
傳送距離	最大15 m
介面	符合EIA RS－232C
通訊協定	上位連結，NT連結1： $\mathrm{N}, ~$ 無程序，工具匯排流的任一項

$* R S-232 C$ 規格下的傳輸速度最高只被定義至 19.2 k 位元 $/ \mathrm{s} \circ \mathrm{CJ}$ 系列雖然利用規格中所定義的物理層而成功地達到了 38.4 k 至 115.2 k 位元／s序列通訊，但依電腦特性不同，有些機型可能無法連線。此時，請降低傳輸速度後再行使用。

	接腳編號	訊號編號	訊號名稱	訊號方向
	1	FG	安全用接地	－
	2	SD（TXD）	傳送資料	輸出
	3	RD（RXD）	接收資料	輸入
	4	RS（RTS）	傳送要求	輸出
	5	CS（CTS）	可傳送	輸入
	6	5 V	電源	－
	7	DR（DSR）	資料設定預備	輸入
	8	ER（DTR）	終端設備預備	輸出
	9	SG（0 V）	訊號用接地	－
	接頭金屬	FG	安全用接地	－

註：可連接序列埠6號接腳（＋5V電源）的只有變換轉接頭（CJ1W－CIF11型），變換模組（NT－AL001型）及可編程終端機（NV3W－M $\square 20 L$ 型）。請勿與其他機器進行連接。

序列選購板（僅限CJ2M－CPU3 \square 型）
序列選購板可在CJ2M CPU模組CJ2M－CPU3 \square 型中使用。

型式	埠	最長傳送距離	連接方式
CP1W－CIF01型	RS－232C $\times 1$	15 m	接頭：D－SUB 9接腳（母）
CP1W－CIF11型	One RS－422A／485 $\times 1$ （非隔離）	端子台：使用棒狀壓著端子	
CP1W－CIF12型	One RS－422A／485 $\times 1$ （隔離）	端子台：使用棒狀壓著端子	

RS－232C選購板（CP1W－CIF01型）

－RS－232C接頭

	接腳編號	訊號編號	訊號名稱	訊號方向
	1	FG	安全用接地	－
	2	SD（TXD）	傳送資料	輸出
	3	RD（RXD）	接收資料	輸入
	4	RS（RTS）	傳送要求	輸出
000007	5	CS（CTS）	可傳送	輸入
$Q O O Q$	6	5 V	電源	－
7	7	DR（DSR）	資料設定預備	輸入
96	8	ER（DTR）	終端設備預備	輸出
	9	SG（0 V）	訊號用接地	－
	接頭金屬	FG	安全用接地	－

註：可連接序列埠6號接腳（＋5V電源）只有變換轉接頭（CJ1W－CIF11型），變換模組（NT－AL001型）及可編程終端機（NV3W－M $\square 20 L$ 型）。請勿與其他機器進行連接。

RS－422A／485選購板（CP1W－CIF11／CP1W－CIF12型）

－RS－422A／485端子台

CJ2M－CPU3 $\square /-\mathrm{CPU1} \square /-\mathrm{MD} 21$

脈衝 $1 / O$ 模組 接頭接腳配置（40接腳）
Sink型（CJ2M－MD211型）接頭

接腳配置	接點記號	輸入訊號種類	接腳編號	（＊）	接點記號	輸入訊號種類	接腳 編號	（＊）
	IN00／IN10	24 VDC	1	A1	IN01／IN11	24 VDC	2	B1
		LD＋	3	A2		LD＋	4	B2
		0 V／LD－	5	A3		0 V／LD－	6	B3
	IN02／IN12	24 VDC	7	A4	IN03／IN13	24 VDC	8	B4
		LD＋	9	A5		LD＋	10	B5
		$0 \mathrm{~V} / \mathrm{LD}-$	11	A6		0 V／LD－	12	B6
	IN04／IN14	24 VDC	13	A7	IN05／IN15	24 VDC	14	B7
		LD＋	15	A8		LD＋	16	B8
		$0 \mathrm{~V} / \mathrm{LD}-$	17	A9		0 V／LD－	18	B9
	IN06／IN16	24 VDC	19	A10	IN07／IN17	24 VDC	20	B10
		LD＋	21	A11		LD＋	22	B11
		$0 \mathrm{~V} / \mathrm{LD}-$	23	A12		0 V／LD－	24	B12
	IN08／IN18	24 VDC	25	A13	IN09／IN19	24 VDC	26	B13
		LD＋	27	A14		LD＋	28	B14
		$0 \mathrm{~V} / \mathrm{LD}-$	29	A15		0 V／LD－	30	B15
	OUT00／OUT10	－－－	31	A16	OUT01／OUT11	－－－	32	B16
	OUT02／OUT12	－－－	33	A17	OUT03／OUT13	－－－	34	B17
	OUT04／OUT14	－－－	35	A18	OUT05／OUT15	－－－	36	B18
	輸出用電源輸入 +V	－－－	37	A19	輸出用電源輸入＋V	－－－	38	B19
	COM	－－－	39	A20	COM	－－－	40	B20

＊接頭端子台轉換模組形XW2D－$\square \square \mathrm{G} \square$ 的端子編號
Source類型（CJ2M－MD212型）接頭

接腳配置	接點記號	輸入訊號種類	接腳 編號	（＊）	接點記號	輸入訊號種類	接腳編號	（＊）
13579111315171921232527293133353739	IN00／IN10	24 VDC	1	A1	IN01／IN11	24 VDC	2	B1
		LD＋	3	A2		LD＋	4	B2
		0 V／LD－	5	A3		$0 \mathrm{~V} / \mathrm{LD}-$	6	B3
	IN02／N12	24 VDC	7	A4	INO3／IN13	24 VDC	8	B4
		LD＋	9	A5		LD＋	10	B5
		$0 \mathrm{~V} / \mathrm{LD}-$	11	A6		0 V／LD－	12	B6
	IN04／IN14	24 VDC	13	A7	IN05／IN15	24 VDC	14	B7
		LD＋	15	A8		LD＋	16	B8
		$0 \mathrm{~V} / \mathrm{LD}-$	17	A9		$0 \mathrm{~V} / \mathrm{LD}-$	18	B9
	IN06／IN16	24 VDC	19	A10	IN07／IN17	24 VDC	20	B10
		LD＋	21	A11		LD＋	22	B11
		$0 \mathrm{~V} / \mathrm{LD}-$	23	A12		0 V／LD－	24	B12
	IN08／N18	24 VDC	25	A13	IN09／IN19	24 VDC	26	B13
		LD＋	27	A14		LD＋	28	B14
		$0 \mathrm{~V} / \mathrm{LD}-$	29	A15		$0 \mathrm{~V} / \mathrm{LD}$－	30	B15
	OUT00／OUT10	－－－	31	A16	OUT01／OUT11	－－－	32	B16
	OUT02／OUT12	－－－	33	A17	OUT03／OUT13	－－－	34	B17
	OUT04／OUT14	－－－	35	A18	OUT05／OUT15	－－－	36	B18
	COM	－－－	37	A19	COM	－－－	38	B19
	輸出用電源輸入－V	－－－	39	A20	輸出用電源輸入－V	－－－	40	B20

$*$ 接頭端子台轉換模組形XW2D－$\square \square \mathrm{G} \square$ 的端子編號

脈衝I／O模組 接頭配線方法

請選擇使用專屬接頭（另外購買）並自製纜線，或使用附OMRON所生產專屬接頭的連接線進行連接端子台。
接卻配置
接點記號
連接至接頭的適用接頭
－MIL排線接頭（40接腳壓接類型）

名稱	OMRON生產型號	第一電子工業製造
插座	XG4M－4030型	FRC5－A040－3TON
應力減輕器	XG4M－4004型	-
模組型號	XG4M－4030－T型	FRC5－A040－3TOS
推薦連接線	XY3A－400 \square 型	-

－MIL排線壓接接頭（40接腳壓接類型）

名稱		OMRON生產型號
插座	AWG24	XG5M－4032－N型
	AWG26～AWG28	XG5M－4035－N型
接點 $* 1$	AWG24	XG5W－0031－N型
	AWG26～AWG28	XG5W－0034－N型
半覆蓋 $* 2$ （每一個插座需要2個）	XG5S－4022型	
＊1．接點附在插座上。		
$* 2$. 請選擇保護蓋及半覆蓋其中之一使用。	XG5S－2001型	

電線

纜線的電線建議使用尺寸為AWG24～28（0．2～0．08 mm $\left.)^{2}\right)$ 。請使用包含外徑之線徑尺寸在 $\varnothing 1.61 \mathrm{~mm}$ 以下的纜線。
可連接的端子台轉換模組

專屬連接纜線	接頭端子台轉換模組	接腳數	尺寸	使用溫度（ ${ }^{\circ} \mathrm{C}$ ）
XW2Z－$\square \square \square \mathrm{K}$ 型	XW2D－40G6型	40	小型	$0 \sim+55$
	XW2B－40G5型		標準	
	XW2B－40G4型			

使用OMRON製附接頭纜線時

使用脈衝I／O模組及接頭端子台轉換模組的連接方法

脈衝 $1 / O$ 模組及伺服驅動器的連接方法

CJ2M－CPU1 \square 型

CJ2M－MD211／MD212型

CJ2M－CPU3 $\square /-\mathrm{CPU1} \square /-\mathrm{MD} 21$

相關使用手冊

Man．No．	型式	操作手冊名稱	用途	內容
SBCA－349	$\begin{aligned} & \text { CJ2H-CPU6 } \square \text {-EIP } \\ & \text { CJ2H-CPU6 } \square \\ & \text { CJ2M-CPU } \square \end{aligned}$	CJ系列CJ2 CPU模組使用操作手冊硬體篇	想要了解 CJ2 CPU 模組的概要 ／設計／安裝／維修等基本規格。主要硬體相關資訊。	CJ2 CPU 模組 PLC 主體的相關說明內容如下。 - 概要。 - 系統設計。 - 系統架構。 - 預防保全及維修保養 請配合使用操作手冊 軟體篇（SBCA－350）使用。
SBCA－350	$\begin{aligned} & \text { CJ2H-CPU6 } \square \text {-EIP } \\ & \text { CJ2H-CPU6 } \square \\ & \text { CJ2M-CPU } \square \end{aligned}$	CJ系列CJ2 CPU模組使用手冊軟體篇	想要了解CJ2 CPU模組的程式編寫l系統啟動相關內容。主要軟體相關資訊。	CJ2 CPU 模組 PLC 主體的相關說明內容如下。 - CPU模組的動作概要。 - 程式編寫相關知識。 - 系統的啟動。 - 機器的詳細說明。 - 故障排除。 請配合使用手冊 硬體篇（SBCA－349）使用。
SBCA－357	$\begin{aligned} & \text { CJ2M-CPU } \square \square \\ & + \\ & \text { CJ2M-MD21 } \square \end{aligned}$	CJ系列CJ2M CPU模組使用操作手冊脈衝 $1 / O$ 模組篇	使用CJ2M CPU模組用的脈衝I／ O功能。	CJ2M CPU 模組用的脈衝輸出入功能說明如下。 - 想要了解規格及配線方法。 - 想要了解輸出入功能。 - 想要了解脈衝擷取功能。 - 想要了解中斷功能。 - 想要了解高速計數功能。 - 想要了解脈衝輸出功能。 - 想要了解PWM輸出功能。 編寫程式時請同時配合指令參考手冊（SBCA－351）。
SBCA－351	CJ2H－CPU6 \square－EIP CJ2H－CPU6 \square CJ2M－CPU3 \square CJ2M－CPU1 \square CS1G／H－CPU $\square \square$ H CS1G／H－CPU $\square \square-\mathrm{V} 1$ CJ1G／H－CPU \square CJ1G－CPU \square CJ1M－CPU \square NSJ \square－$\square \square \square \square(\square)-\square$ \square	CS／CJ／NSJ系統指令參考手冊	想了解命令語的詳細內容	說明各個命令語的詳細內容。 編寫程式時，請配合使用操作手冊 軟體篇（SBCA－350）使用。
SBCA－304	CJ2H－CPU6 \square－EIP CJ2H－CPU6 \square CJ2M－CPU $\square \square$ CS1G／H－CPU $\square \square \mathrm{H}$ CS1G／H－CPU $\square \square$－V1 CS1D－CPU $\square \square \mathrm{H}$ CS1D－CPU $\square \square \mathrm{S}$ CS1W－SCU $\square-\mathrm{V} 1$ CS1W－SCB $\square \square$－V1 CJ1H－CPU $\square \mathrm{H}-\mathrm{R}$ CJ1G／H－CPU $\square \square \mathrm{H}$ CJ1G－CPU $\square \mathrm{P}$ CJ1M－CPU $\square \square$ CJ1G－CPU $\square \square$ CJ1W－SCU $\square \square$－V1 CP1H－X $\square \square \square-\square$ CP1H－XA $\square \square \square \square-\square$ CP1H－Y $\square \square \square \square-\square$ CP1E－E／N $\square \square \mathrm{D} \square \square$ NSJ $\square-\square \square \square \square$－$\square$ ）$\square \square \square$	CS／CJ／CP／NSJ系列通訊指令參考手冊	想要了解CS／CJ／CP系列CPU模組，NSJ系列通訊指令詳細介紹	1）C模式指令及 2）FINS指令的詳細說明。 想要了解針對CPU模組通訊指令（C模式指令或FINS指令）詳細 內容之參考資料。 註：本操作手冊中所記載的通訊指令係為針對CPU模組之通訊指令。通訊路徑則不受限（可經由CPU模組的序列通訊訊，序列溝通板／模組通訊埠，通訊模組等）。此外，關於高功能／O模組或CPU高功能模組的指令，請參考各模組之使用操作手冊。
SBCA－342	CJ2H－CPU6 \square－EIP CJ2M－CPU3 \square CS1W－EIP21 CJ1W－EIP21	EtherNet／IP模組使用手冊	使用EtherNet／IP功能	EtherNet／IP 內建埠／模組相關介紹。 基本設定，標籤資料連結，FINS通訊，其他功能相關介紹。
SBCA－346	$\begin{aligned} & \text { CXONE-AL } \square \square \mathrm{C}-\mathrm{V} \square \text { AL } \square \\ & \square \mathrm{D}-\mathrm{V} \square \end{aligned}$	CX－One設定操作手冊	從CX－One安裝軟體	FA整合工具套件CX－One的概要，CX－One的安裝方法說明。
SBCA－337		CX－Programmer操作手冊		
SBCA－338	WS02－CXPC \square－V \square	CX－Programmer作業操作手冊功能區塊篇／結構化內容篇	想知道Windows電腦用編寫程式 工具CX－Programmer操作方法	CX－Programmer操作方法介紹。編寫程式時，請配合CJ2使用操作手冊 軟體篇（SBCA－350）以及指令參考手冊（SBCA－351）使用。
SBCA－348		CX－Programmer作業操作手冊SFC篇		

Man．No．	型式	操作手冊名稱	用途	内容

選購時的注意事項

首先感謝您平時對OMRON產品的支持與愛護。
各位根據型錄購買本公司控制器產品（以下稱為「本公司產品」時，敬請碓認以下內容。

1．保固內容：
保固期間
本公司的產品保固期間為購買產品後亦或是將產品交貨至指定地點後一年內。
保固範圍
上述保固期間中，若產品因本公司責任發生故障者，將於原購買地點提供免費的維修服務或更換代替品。
但下列故障原因不在保固範圍內 ：
a）不在本目錄或規格書內所規定之條件，環境使用下所造成的故障
b）非產品本身原因所造成的故障
c）非經由本公司所進行的改裝或維修所造成的故障
d）未依照原本設計之使用方式所造成的故障
e）出貨時之科技水準所無法預測之原因所造成的故障
f）其它天災，災害等不可抗力所造成的故障
此外，上述保固僅限於本公司產品本身，因產品故障所導致之相關損失並不包含在本保固範圍內。

2．責任限制
關於因本公司產品所引發之一切特別損害，間接損害，消極損害（應得利益之喪失），本公司不負任何責任。
關於本公司之可程式化產品，針對非經本公司技術人員所執行之程式或因其所造成之結果，本公司不負任何責任。

3．選購時，應符合用途條件
將本公司商品與其他搭配使用時，請確認是否符合顧客所需之規格，法規或限制等。
此外，請顧客自行確認目前所使用的系統，機械或是裝置是

否適用於本公司商品。
再者，請顧客自行確認本公司商品是否符合目前所使用的系統，機械或是裝置。
如未確認是否符合或適用時，本公司無須對本公司商品的適用性負責。
使用於以下用途時，敬請於洽詢本公司業務人員後根據規格書等進行確認，同時注意安全措施，例如使用的額定電壓，性能要盡量低於限制範圍以策安全；或是採用在發生故障時可將危險程度降至最小的安全回路等。
a）用於戶外，會遭受潛在化學污染，電力會遭受妨礙的用途，或是在本型錄未記載的條件或環境下使用。
b）核能控制設備，焚燒設備，鐵路，航空，車輛設備，醫用機器，娛樂用途機械設備，安全裝置以及遵照政府機構或個別業界規定的設備。
c）危及生命或財產的系統，機械，裝置。
d）瓦斯，水／供電系統，或是系統穩定性有特殊要求的設備。
e）其他符合a）～d），需要有高度安全性的用途。
當顧客將本公司商品使用於可能嚴重危害生命，財產等用途時，敬請務必事先確認系統整體有危險告示，並採用備援設計等可確保安全性，以及本公司產品針對整體設備的特定用途上的配電與設置適當。
由於本型錄所記載的應用程式範例屬於參考性質，如需直接採用時，使用前請先確認機械，裝置的功能與安全性。敬請顧客務必以正確的方法來使用本公司產品，並了解使用時的禁止事項與注意事項，以免不當的使用而造成他人意外的損失。

4．規格變更

本型錄所記載的規格以及附屬品，可能會在必要時，進行改良時或其他事由而變更。敬請洽詢本公司或特約店之營業人員，以確認本公司商品的實際規格。

台灣歐姆龍股份有限公司

OmRO 產品技術客服中心

（2）008－0186－3102
【苃業自動化】
產品技術諮詢服務
－服枒詩間
週一～週五
8：15～12：00／13：00～17：00
－FAX諮詢專線
002－86－21－50504618
－E－mail諮詢－
http：／／www．omron．com．tw

http：／／www omron com tw

台北總公司：台北市復興北路363號6樓（弘雅大樓）電話：02－2715－3331 傳真：02－2712－6712
新竹事業所：新竹縣竹北市自強南路8號9樓之1
電話：03－667－5557 傳真：03－667－5558
台中事業所：台中市中港路一段345號27樓之3（中港高峰大樓）電話：04－2325－0834 傳真：04－2325－0734
台南事業所：台南市民生路二段 307 號 22 樓之 1 （台南運河大樓）電話：06－226－2208

傳真：06－226－1751

特約店

註：規格可能改變，恕不另行通知，最終以產品說明書為準。

[^0]: ＊1．對EM記憶體區，透過EM區force－set／reset機能的設定，可以對EM區的biti進行强制與復歸機能。

[^1]: ＊2．限定CJ2M CPU模組需Ver．2．0以上的版本，能安裝脈衝I／O模組
 ＊3．無法在功能區塊中使用。
 ＊4．僅能在功能區塊中使用。
 $* 5$ ．僅適用於CJ2M－CPU3 \square 型。

[^2]: ＊11．CJ2M－CPU3 \square 型必須加裝序列選購板。
 ＊12．僅適用於CJ2M－CPU3 \square 型。

[^3]: ＊13．僅適用於CJ2M－CPU3 \square 型。

[^4]: ＊ON，OFF代表輸出元件的ON，OFF。

